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Abstract. We describe an approach to the positron trapping at vacancies based on the optical
theorem. We calculate the imaginary part of the optical potential in anab initio model at the
time when electron–hole excitation takes place. The obtained analytical formulae for the optical
potential are tested as a function of the positron incident energy, the positron binding energy,
and the electron density parameterrs . The calculation of the optical potential range agrees
well with the vacancy radius. The approach is used for the description of observed temperature
dependences of trapping rate at vacancies in pure metals as reported in the literature. The results
are satisfactory and the obtained values of the optical potential are quite reasonable.

1. Introduction

The inelastic scattering and the trapping of positrons at vacancies in a solid are characterized
by the trapping rate efficiency parameter. This parameter and positron mean lifetime are
the only parameters in the rate equations, called the trapping model [1], which is used in
the description of the fate of positrons in a solid. The mean positron lifetime at a vacancy
is well understood from the theoretical point of view and it is easy to measure. The
trapping rate efficiency parameter, which describes the transition rate from the free to the
trapped state, is rather poorly estimated from experiments. We can add that in the problem
of the trapping and scattering of positrons by vacancies in solids, an exact theoretical
treatment involving the interactions between the incident positron and all the electrons is
complicated. Nevertheless, the proper description of these processes could be helpful in
a better understanding of the vacancy structure and its electronic environment detected by
positrons. There are also experimental proofs that the trapping efficiency parameter depends
on the vacancy surroundings and it exhibits a temperature dependence.

In the calculation of the trapping efficiency the theory of scattering and trapping of
thermal neutrons at nuclei [2] was included. Authors who apply this theory take the simple
relation for the cross section of neutron absorption at nuclei and try to describe the absorption
of positrons at vacancies, e.g. in [3]. However, the relations which are valid for neutrons
are not valid for positrons. This is due to the fact that in this theory it is assumed that the
neutron incoming wave is attenuated in the region of the nucleus but can still be described
as a plain wave. We know from other authors, e.g. [11], that the trapped positron is well
localized, and its wave function looks more like a Gaussian function than a plane wave.
The authors [3] consider only the absorption of the ‘s’ wave but it is easy to show that at
higher temperature the ‘p’ wave also gives an important contribution.

0953-8984/97/388161+08$19.50c© 1997 IOP Publishing Ltd 8161



8162 J Dryzek

A better approach to the problem of calculating the trapping efficiency came from
Hodges, who applied the Fermi golden rule [4], but this has severe limitations since it has
to be combined with anad hocassumption on how the transition occurs [5].

Here we present the approach to trap positrons at vacancies by the scattering theory with
the optical potential first suggested by Shirai and Takamura [6]. This approach seems to be a
much better description of the problem of positron trapping, since it takes care of the elastic
and inelastic scattering of the positron wave function. The value of the optical potential
can either be calculated from theory or deduced from experiment. The basic idea is that we
consider the scatter of a positron at a vacancy immersed in the electron sea. The positron
will be scattered, either elastically or inelastically. Instead of treating the interaction of a
positron with each individual electron one seeks an ‘effective’ potential between positron and
vacancy, such that the scattering by the potential describes the observed effect. As shown
by Feshbach [7], in many cases the optical potential successfully describes the properties of
the cross section of the scattering of neutrons at nuclei. The optical potential is frequently
used the in description of nuclear reaction data but also for low-energy positron or electron
diffraction data.

We intend to present an outline of the theory of positron scattering at a vacancy and
the method of calculation of the imaginary part of the optical potentialab initio for the
electron–hole excitation. The application of the approach to the description of data reported
in the literature will also be presented.

2. The optical model

In our consideration we take into account that the trapped positron loses its energy in a
process of creation of holes and electrons in the excited state above the Fermi level. We
consider the interaction of an incident positron with an electron located close to the vacancy.
The Schr̈odinger equation of such a system (figure 1) is given by (¯h = 1)(
− 1

2m
∇2

1 + V +(r1)− 1

2me
∇2

2 + V −(r2)+ V (r1, r2)

)
9(r1, r2) = (E + E0)9(r1, r2)

(1)

whereV +(r1) represents the potential of the interaction between positron and vacancy,
V −(r2) that between electron and vacancy andV (r1, r2) = e2/|r1−r2| between an electron
and an incident positron;e is the electron charge, andm and me are the positron and
electron mass, respectively.V −(r2) will be neglected in the following consideration. The
momentum of the incident positron is equal top and the initial momentum of an electron
is k0, E = p2/2m andE0 = k2

0/2me. The wave function of the system9(r1, r2) can be

Figure 1. The scattering of a positron in the vicinity of a vacancy, assuming that the inelastic
process is realized by electron–hole excitation.
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expressed by a ‘coupled state’ which is the expansion in terms of a set of unperturbed states
of the electronφj (r):

9(r1, r2) =
∑
i=0

φi(r2)ψi(r1) (2)

whereψ0(r1) describes the elastic scattering positron wave. As mentioned above we can
solve instead of (1) the following equation:(

− 1

2m
∇2+ V +(r)− p2

2m
+ Ũ (r)

)
ψ0(r) = 0 (3)

where Ũ (r) is the so-called ‘optical potential’. We adopted the approach suggested by
Shaw [8], with the optical potential expressed by

Ũ = 〈p|R|p〉 (4)

whereR is the operator defined as

R = V + lim
η→0

V
1

E −H0+ iη
R (5)

whereH0 = −1/(2m)∇2. In general the optical potential is energy dependent, nonlocal
and complex. Nevertheless, in many applications it is enough to assume that the potential
is constant in the vacancy range but complex:Ũ = U − iW . In our previous work,
[9] we presented the exact solution of (3) for the case of square-well potentialV + where
W = constant but different from zero only within the vacancy region. Note that the trapping
efficiency depends directly on the value of the imaginary part of the optical potential as
follows [10]:

µ = Nat p
m
σabs = Nat 4πh̄

Em

∑
l=0

(2l + 1)
∫ ∞

0
drW(r)|ul(r)|2 (6)

whereNat is the atomic density andul(r) is the radial solution of (3) which satisfies the
integral equation

ul(r)=2ikrjl(kr)+ 2m

k

∫ ∞
0

dr ′ jl(kr<)h
(1)
l (kr>)k

2rr ′[V +(r ′)+ U(r ′)− iW(r ′)]ul(r ′) (7)

wherer< is the lesser of(r, r ′), r> is the greater of(r, r ′), h(1)l = jl + iηl is the Hankel
function, andjl andηl are the spherical Bessel functions.

In the first-order approximation one can find the relation for theR operator and, hence,
the imaginary part of the optical potential [8]:

W = π
∑
k

∑
q

|M(p, q)|22(kF − k)[1−2(kF − |k + q|)]δ(E + E0− E1+ Eb) (8)

whereEb(> 0) is the positron binding energy at the vacancy,E1 = |k + q|2/2me is the
energy of the electron in the excited state,kF is the Fermi momentum, and the matrix
element between the initial and final state is

M(p, q) = 〈k0+ q, b|V |k0,p〉 (9)

where |b〉 is the positron wave function in the bound state. Further we assume that
〈r|k0〉 = �−1/2 exp(ik0 · r), 4〈r|k0 + q〉 = �−1/2 exp[i(k0 + q) · r], also that the incident
positron wave can be described as a plane wave,〈r|p〉 = �1/2 exp(ip · r), and� is the
normalization volume. Thus one can rewrite the matrix element of (9) in the form

M(p, q) = �−3/2V (q)

∫
drψb(r) exp[−i(p− q) · r] (10)
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whereV (q) = 4πe2/[q2ε(q)], and ε(q) is the dielectric function of the host. We assume
that the positron in the trapped state is described by a Gaussian function [11]:

ψb(r) = (2a/π)3/4 exp(−ar2) (11)

wherea is a parameter. Finally we can rewrite the imaginary potentialW as follows:

W =
√

2

πa3

kFα
2mc2

�

∫ 1

−1
dt
∫ ∞

0
dq

exp[−(p2+ q2− 2pqt)/(2a)]

q2ε(q)2

×K
(
q

kF
,

0.5p2+mEb
k2
F

)
(12)

whereK(x, y) = π [1− (y/x−0.5x)2]/x if x+0.5x2 > y > |x−0.5x2|, K(x, y) = 2πy/x
if 0 6 y 6 x − 0.5x2 and x < 2, andK(x, y) = 0 otherwise [5],α is the fine-structure
constant, andc is the speed of light.

3. Discussion

The imaginary potential depends on the positron binding energyEb, the Fermi momentum,
kF (kF = 0.3169/(rs/a0) [nm−1], wherea0 is the Bohr radius) and also on the value of
momentum, or energy, of the incident positron,|p|. The potential depends on the dielectric
function,ε(q). In order to avoid the logarithmic singularity we can take the Thomas–Fermi
approximation of the dielectric function,ε(q) = 1+ k2

T F /q
2, wherekT F is the Thomas–

Fermi wavenumber (kT F = 0.295/
√
rs/a0 [nm−1]). Figure 2 presents the calculated value

of the imaginary potential,W , as a function of incident positron energy, according to (12).
It presents the case of a vacancy in an Al host: this means that it was assumed thatrs = 2.07
a0, Eb = 1.56 eV anda = 0.0819 nm−2 [11]. Since the value of the potential decreases
with increasing positron energy we should not expect a trapping of nonthermal positrons.

Figure 2. The imaginary part of the optical potential as a function of incident positron energy
for Eb = 1.56 eV andrs = 2.07 a0.
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Figure 3. The imaginary part of the optical potential as a function of positron binding energy
for E = 0.1 eV andrs = 2.07 a0.

Figure 4. The imaginary part of the optical potential as a function of thers parameter for
Eb = 1.56 eV andE = 0.1 eV.

An important result is that in the narrow range of thermal positron energy (i.e. less than
0.1 eV),W is almost constant and equal to 0.64 eV. The imaginary potential increases
when the value of the positron binding energy increases but after reaching a maximum it
rapidly decreases (figure 3), so for deep positron traps we should not expect larger values of
the trapping efficiency than for traps for which the positron binding energy is about 1 eV.
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Nevertheless, if for some reason the positron binding energy is changing, this should be
reflected in the value of trapping efficiency. It is interesting that the imaginary potential
almost exponentially decreases with increase of thers parameter (figure 4). For metals the
rs parameter alters from 1.9 to 5.6a0 and the calculation shows that this induces a change
of W by two orders of magnitude. Thus, for metals with a highrs parameter (such as Cs,
Na, Rb), we do not observe positron trapping at their vacancies, explained by the small
value of the correspondingW . However, we should keep in mind that around the vacancy,
where a positron is localized, the localrs parameter may be smaller than in the host.

It is interesting to ask about the range of the optical potential one can calculate. The
mean square radius of the optical potential from the relation in [12] is

〈R2〉 = −3

(
1

U0(q)

∂2U0(q)

∂q2

)
q=0

(13)

whereU0 is the zeroth-order approximation of the optical potential, which from (4) is equal
to V (q) and hence

〈R2〉 = 6/k2
T F . (14)

For Al,
√
〈R2〉 = 0.12 nm, that is a little smaller than the vacancy radius of 0.158 nm.

Nevertheless, if one takes into account the relaxation effects, the range of the optical potential
agrees with that of the vacancy potential felt by a positron,V +. It is worth noting that the
optical potential has also a real part which can modify theV + potential used in calculations
of the positron lifetime at a vacancy.

4. Comparison with experimental data

Recently Trump and Petersen [13] performed low-temperature measurements of positron
lifetime spectra for single-crystal samples of pure metals: Al, Ni, Zn and Mo. They
assumed that the vacancy provides an essential contribution to the spectra and hence they
deduced the temperature dependence of the trapping rate of positrons at the vacancy. They
pointed out that the trapping rate is proportional toT −1/2 over a wide temperature range
for the metals studied. That result was explained using the relation on the cross section
of absorption of thermal neutrons. As we mentioned above that is a rather crude approach
to the positron trapping efficiency. Thus we apply the optical model presented above
to describe the data obtained by those authors. For simplification it is assumed that the
positron–vacancy interaction in (3) is represented by a square-well potential:

V +(r)+ Ũ (r) =
{
V0− iW |r| 6 R
0 |r| > R

(15)

whereR represents the vacancy radius. For such a case the solution of (3) may be expressed
in analytical form, e.g., (7) in [9]. In this procedure the following parameters were fitted:
V0, W , and the vacancy concentrationC. We assumed that the vacancy radius is a linear
function of temperature,R = R0(1+ αT ), andR0 andα were also fitted. This assumption
was necessary due to the experimental evidence of the thermal expansion of the vacancy
volume [14].

The solid lines in figure 5 present the best fit to the experimental points of the
temperature dependence of the trapping rate:K(T ) = C∗µ(T ), whereµ(T ) is the trapping
efficiency with the Boltzmann–Maxwell distribution defined by (7) in [9]. Table 1 contains
the values from the fit. First of all, one can find excellent agreement between the presented
theory and the experiment for Ni and Mo but rather poor agreement for Zn. It is interesting
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(a)

(b)

Figure 5. The temperature dependence of the positron trapping rate at vacancies in Ni, Mo (a),
and Al, Zn (b); the experimental points were taken from [13] and the solid lines are the best fit
to the calculated trapping rates from the optical potential approach.

that in all cases the vacancy radius obtained from the fit is lower than that obtained from
the corresponding atomic volume. This is consistent with the inward relaxation of atoms
around the vacancies in metals as detected by other measurements. The depth of the vacancy
potential,V0, evaluated in the fit is in good agreement with other theoretical calculations,
e.g. with the value of 7.88 eV found by Boroński and Nieminen [15] for a vacancy in
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Al. The imaginary part of the optical potentialW obtained from the fit for Al is almost
equal to the value obtained from the calculation presented above, according to (12). Note
the large value of the thermal coefficientα obtained from the fit. For Al, this value is
about a factor of 20 larger than the experimental linear expansion coefficient. This result
is not too surprising since the measurements of the self-diffusion activation volumes in Cd
indicated a value of the thermal expansion coefficient of the vacancy volume about a factor
of 15 larger than the macroscopic volume thermal expansion coefficient [14]. We expect
that the atomic vibration may also contribute essentially to the temperature change of the
vacancy volume and hence the positron–vacancy potential. This effect may explain the poor
agreement between theory and experiment obtained for Zn, of which the Debye temperature
is more than 100 K lower than for the other metals studied.

Table 1. The parameters of the optical potential obtained from the fitting procedure.

R0 V0 W C α

[nm] [eV] [eV] [×10−7] [10−4 × 1/K]

Ni 0.136± 0.002 −8.12± 0.1 0.74± 0.01 6.5± 0.4 10± 2
Mo 0.134± 0.001 −7.2± 0.04 0.53± 0.01 1.34± 0.04 16.6± 0.4
Zn 0.132± 0.01 −8.67± 0.5 2.1± 0.1 0.81± 0.1 5.4± 0.04
Al 0.144± 0.001 −7.12± 0.1 0.62± 0.01 4.6± 0.3 8.4± 0.2

Finally, one can conclude that the optical model is an appropriate approach to calculate
trapping efficiencies. The present calculations have shown that the imaginary part of
the optical potential related to the electron–hole excitation is responsible for the positron
absorption at a vacancy, leading to trapping efficiencies which agree with experiment. The
dependence of this potential on the incident positron energy, the positron binding energy
and thers parameter qualitatively explains the experimentally observed phenomena. The
optical model was also able to describe the temperature dependence of the trapping rate
reported in the literature. The values of the optical potential obtained from the fit were
quite reasonable and agree with other theoretical calculations.
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